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Abstract

Due to regulatory capital requirements scheduled to become effective
by the end of 2006, financial institutions put substantial effort in collect-
ing loss data and determining adequate loss distributions for operational
risk types. However, thresholds in the collection of operational loss data
lead to biased estimates as not all loss cases enter internal databases. We
provide an approach to the estimation of left-truncated severity data us-
ing the EM-algorithm. We extend the model to adjust the frequency and
the aggregated loss distributions, and quantify the impact on the Value-
at-Risk figures. Furthermore, the paper demonstrates that the effects are
more substantial for heavier-tailed distributions. We recommend that fi-
nancial institutions should consider the effect of collection thresholds both
in estimation of the frequency and severity distributions.
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1 Introduction

A number of unprecedented large losses in the 1990s has directed risk managers’
and regulators’ attention toward the operational risk. Two frequently cited
cases are the bankruptcy of the Barings Bank in 1995 caused by internal fraud,
and the 1998 collapse of the Long Term Capital Management (LTCM) due to
inadequate business practices. Operational risk has been since acknowledged as
a major contributor to banks’ and insurance companies’ risk positions. Current
estimates suggest that the allocation of total financial risk of a bank is done
according to 50% credit, market and liquidity 15% and operational risk 35% [5].
For the insurance companies, being affected by their clients’ operational risk in
addition to their own, adds a considerable task.

The definition of operational risk according to the Basel capital accord is
widely accepted [2]:

The risk of direct or indirect loss resulting from inadequate or failed
internal processes, people and systems or from external events.

For regulatory purposes, banks are required to follow the Loss Distribution
(large banks) or another approach to determine the operational capital charge
[1]. The process is structured around the basic elements: internal data, external
data, scenario analysis and internal control factors. An accurate data recording
environment is crucial for sound modelling. Under a perfect collection process,
all events would be detected and duly recorded, and the observed distribution
would define the true distribution of the losses. However, the data recording
is generally a subject to lower thresholds, with the threshold for data in the
European banks’ external database being set at around 1,000,000 Euro, while
for the internal databases banks normally record data exceeding around 10,000
Euro [2]. As a consequence, loss events smaller in magnitude than 10,000 Euro
do not enter the databases. We refer to such data as missing data.

This paper analyzes the effects of such missing data on the distributional
form of the loss severity. We make use of a modified version of Dempster’s
Expectation-Maximization (EM) algorithm to ’recover’ the true Maximum Like-
lihood parameters of assumed distribution. The EM algorithm was suggested
for truncated data in operational risk in [3]. We emphasize that the severity and
frequency distributions of the operational risk are inter-related in the sense that
if the missing data significantly alters the severity, the frequency distributions
also require adjustment. Hence, if the missing data in the lower quantiles of
the severity distribution is accounted for, it can prevent over-estimating higher
quantiles and hence can avoid an over-stated Value-at-Risk (VaR for short)
based capital charge. On the other hand, the intensity factor of the frequency
distribution would have to be increased by a factor proportional to the ’informa-
tion loss’, i.e. the difference in the expected fraction of data below the threshold,
and this has an opposite effect on the capital charge. This paper examines both
effects, and determines the aggregated impact on the operational capital charge.
We also examine the sensitivity of the estimates with respect to the threshold
levels and distributional patterns.
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2 Expectation-Maximization Algorithm for Left-

Truncated Data

2.1 Collection Thresholds

A complete collection process for operational losses would yield true distribu-
tions for severity and frequency. However, thresholds in data collection lead
to left-truncated observed distributions for severities, and a reduced frequency
count. This type of missing data is called nonrandomly missing data. Threshold
adjustments may be of particular interest for operational risk quantification, due
to its possible impact on the capital charge: ignoring the missing data would
lead to, possibly significant, scaling up of predictions, and an underestimation
of frequency would scale them down. Hence, the effect on VaR figures of, on
one hand, overestimated severities and, on the other hand, underestimated fre-
quencies, is not unique and ought to be fully examined. Once the truncated
data distribution is estimated, there are two distinct approaches for subsequent
steps:

1. Work with the observed severity distribution, and the observed frequencies.

2. Carry out necessary adjustments, and work with the true (or complete)
severity distribution, and adequately adjust for the frequency count.

Depending on the chosen method, both the true and the observed distribu-
tions for frequency and severity could be of interest. The complete data density
specification would require the form:

f(x | θ∗) =





f(x|θ∗)
∞∫
0

f(x|θ∗)dx
for x > 0

0 for x ≤ 0

(2.1)

since the losses are assumed to take strictly positive values. θ∗ denotes the true
parameter space for complete data.

In the next section we introduce a modified version of the EM algorithm
that we use to ’recover’ the complete-data severity distribution.

2.2 General Methodology

The original EM algorithm was fully developed by Dempster et. al in 1977 [6].
This iterative procedure consists of two parts - the Expectation step and the
Maximization step. In the end, we obtain the posterior form of the parame-
ter vector, given the observed data sample and information on the existence of
missing data. For our purposes, let the observed (incomplete) data ỹ be a real-
ization from the sample space Ỹ, and the complete-data set x̃ on X̃ is observed
indirectly through ỹ. Hence, the mapping Ỹ = X (ỹ) ensures the map x 7→ ỹ(x)
takes place. The sample space Y of nonrandomly missing data y is such that
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X = Y ∪ Ỹ. We denote θ∗ to be the complete-data parameter space, and θ to
be the parameter space under the observed data specification.

It is notable that unlike most problems to which EM algorithm is applied, we
do not know the exact number (or fraction) of the data that is missing. We only
know that the data is missing not at random, but below a pre-specified threshold
H (until zero). Hence, we present a modified version of the EM algorithm, and
derive the Maximum Likelihood estimates, without the knowledge of the number
of missing data points. Because of the number of missing data is unknown, it
is not possible to compute the log-Likelihood function for the entire complete-
data set. However, the expected value of the observed data can be computed
iteratively, for each round of the algorithm.

There could be many possibilities for complete-data specification f(x|θ∗),
given the incomplete-data specification g(x|θ∗):

g(y|θ∗) =

∫

X (ỹ)

f(x|θ∗)dx (2.2)

Suppose that θ(k) denotes the value of the parameters obtained on the kth
iteration of the algorithm. The Expectation and Maximization steps (E-step
and M-step), at each cycle k, are constructed in the following fashion:

E-step: Calculate the expected value of the log-Likelihood function of complete-
data set, based on the i = 1, 2, ...,m incomplete data points and the parameter
values obtained in the kth cycle:

t
(k) = E

θ
(k)

[
l(x|θ)|ỹ

]
= E

θ
(k)

[
l(y|θ)|ỹ

]
+ (1 − Q

(k))l(ỹ|θ) (2.3)

where Q(k) denotes the probability that a data point lies below the threshold
H and above 0, under the current cycle’s parameter set values.

Remark: The density associated with the log-Likelihood function, is re-
stricted (or adjusted) to the non-negative support, as in Equation 2.1.

M-step: Maximize the expected log-likelihood from the E-step with respect
to the parameters, and set them as the new cycle’s initial parameter values
θ(k+1):

E
θ

(k)

[
l(x|θ)|ỹ

]
= t(k). (2.4)

Every cycle of the algorithm produces new estimates of the unknown pa-
rameter set, based on the estimates from the previous cycle. Moreover, each
iteration cycle increases the likelihood of the sample. The limit of this sequence
of estimates leads to a (local) maximum of the log-likelihood function.
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2.3 Example with Lognormal Distribution

In this section, for the practical purposes, we illustrate the estimation procedure
for the case of the Lognormal distribution. 1

For distributions that belong to the exponential family, in the E-step it
suffices to compute the expected value of the sufficient statistics. Then, these
are used to compute the value of the expected log-Likelihood function.

Let the complete-data vector x = (x1, ...., xN )′ be a random sample drawn
from the Lognormal distribution with parameter set θ = {µ, σ}, with N being
the total number of observations in the complete data set,m being the number of
observed data, and N−m being the number of missing data (which is unknown).
The sufficient statistics vector is T (X) = {

∑N

i=1 log(Xi);
∑N

i=1 log
2(Xi) }, and

taking expectations for each data point, we obtain at each iteration:

E
θ

(k)

[
1
N

N∑
i=1

log(Xi)|ỹ
]
= (1−Q(k)) 1

m

m∑
i=1

log(xi) +
H∫
0

log(x)f(x|ỹ,θ(k))dx

E
θ

(k)

[
1
N

N∑
i=1

log2(Xi)|ỹ
]
= (1−Q(k)) 1

m

m∑
i=1

log2(xi) +
H∫
0

log2(x)f(x|ỹ,θ(k))dx

The M-step simplifies to finding the unique solution to the following equa-
tion:

E
θ

(k)

[
l(x|θ)|ỹ

]
=

−(1−Q(k))
[
m log(2πσ̂2)

2 +
m∑
i=1

log(xi) +
1

2σ̂2

m∑
i=1

[log(xi)− µ̂(k)]2
]
− ...

−Q(k) (N−m) log(2πσ̂2)
2 − (N −m)

[ H∫
0

log(x)f(x|ỹ,θ(k))dx+ ...

+ 1
2σ̂2

H∫
0

[log(x)− µ̂]2f(x|ỹ,θ(k))dx
]

which, alternatively, implies the likelihood for each data point of the form

E
θ

(k)

[
l(xi|θ)|ỹ

]
=

−(1−Q(k))
[

log(2πσ̂2)
2 + 1

m

m∑
i=1

log(xi) +
1

2mσ̂2

m∑
i=1

[log(xi)− µ̂]2
]
− ...

−Q(k) log(2πσ̂2)
2 −

H∫
0

log(x)f(x|ỹ,θ(k))dx− ...

− 1
2σ̂2

H∫
0

[log(x)− µ̂]2f(x|ỹ,θ(k))dx, i = 1, 2, ..., N

1BIS suggests using Lognormal distribution to model the severity distribution of opera-
tional losses [1].
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The(k + 1)th step’s posterior Maximum Likelihood estimation of µ and σ2

yields the new estimates:

µ̂
(k+1)
MLE = (1−Q(k)) 1

m

m∑
i=1

log(xi) +
H∫
0

log(x)f(x;θ(k))dx

σ̂2
(k+1)

MLE = (1−Q(k)) 1
m

m∑
i=1

log2(xi) +
H∫
0

log2(x)f(x;θ(k))dx− µ̂2
(k+1)

MLE
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Figure 1: Comparison of PDF and CDF for the example. The bold graph is the
original fit. The dotted graph is based on the EM algorithm.

Table 11 illustrates the convergence results with the EM algorithm for a sim-
ple problem with five observed values ỹ = {20, 23, 25, 30, 50} and a threshold
level H = 15. As the start values for the algorithm we chose the MLE estimates
of the unconditional Lognormal density, µ0 = 3.3327 and σ2

0 = 0.1011. This
yields the value of the log-Likelihood for the unconditional Lognormal distri-
bution applied to the observed data of −18.0299. The algorithm iterates until

δ =
max

k {µ(k) − µ(k−1), σ2(k) − σ2(k−1)} < 0.1 · 10−15, i.e. until the MLE esti-
mates converge (the value is chosen arbitrarily). The posterior MLE estimates
appear in the bottom row of Table 11. The last column shows the log-Likelihood
values for the observed portion of the data.

This simple example illustrates how the parameters for the assumed Log-
normal distribution were not appropriate for the complete sample, once the
existence of some missing data is recognized. It is viewed from the increase in
the scale parameter, and a drop of the location parameter. The log-Likelihood
function of the observed data when missing data is accounted for, is also in-
creased. Figure 1 illustrates the difference in fitted densities and distributions.
In the next section we will discuss robustness of the Maximum Likelihood esti-
mators under the EM algorithm.
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k µ(k) σ2(k) logL
(k)
obs

1 3.332665 0.1011401 -17.58342
2 3.314242 0.1129907 -17.40839
3 3.305652 0.1182587 -17.33105
4 3.301268 0.1209048 -17.29199
5 3.29894 0.1223007 -17.27129
6 3.29768 0.1230544 -17.26009
7 3.29699 0.1234662 -17.25396
8 3.29661 0.1236928 -17.25059
9 3.2964 0.1238178 -17.24873

10 3.296284 0.1238869 -17.24770
11 3.29622 0.1239251 -17.24713
12 3.296185 0.1239463 -17.24681
13 3.296165 0.123958 -17.24664
14 3.296154 0.1239645 -17.24654
15 3.296148 0.1239681 -17.24649
16 3.296145 0.1239701 -17.24646
17 3.296143 0.1239712 -17.24644
18 3.296142 0.1239719 -17.24643
19 3.296141 0.1239722 -17.24643
20 3.296141 0.1239724 -17.24642
21 3.296141 0.1239725 -17.24642
22 3.296141 0.1239725 -17.24642
23 3.29614 0.1239726 -17.24642
...

...
...

...
55 3.29614 0.1239726 -17.24642

Table 1: Iteration results of EM-algorithm for the example. Convergence was
achieved after 55 iterations.

2.4 Robustness of the EM Estimators

2.4.1 Properties of the EM Estimators

Here, we briefly present major properties of the EM estimators. Suppose that
θ

(k) converges to θ
∗ during the kth iteration. Then the following properties

hold [6].

Property 1. For any θ ∈ Θ, expected log-Likelihood of the missing data is
maximized at each iteration under the new parameter estimates:

E
θ

(k)

[
l(y|θ)|ỹ

]
≤ E

θ
(k)

[
l(y|θ(k))|ỹ

]
(2.5)

Property 2. The EM algorithm increases the log-Likelihood of observed-
data sample at each iteration:

l(ỹ|θ(k+1)) ≥ l(ỹ|θ(k)) (2.6)
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with equality iff

E
θ

(k)

[
l(x|θ(k+1))|ȳ

]
= E

θ
(k)

[
l(x|θ(k))|ȳ

]
(2.7)

The first property guarantees the convergence. The second property ensures
that the log-Likelihood of the observed data is increased with the progress of
the algorithm.

2.4.2 Numerical Comparisons

In this section we show how the EM algorithm can be used in order to effectively
unveil the true parameters for the complete-data, given nonrandomly missing
data and given the parameters from the distribution fitted to the observed-data
sample. An important assumption is made that both observed-data sample and
the missing data portion follow the same distribution.

We present the results of several simulations. We first generated 100 sam-
ples of 1000 data points from various distributions. The parameters of assumed
distributions were first computed with the MLE estimators, using the complete-
data sample. These are denoted with the subscript in the footage of the fol-
lowing tables. Then, the samples were truncated at various thresholds, and the
data below the threshold would be taken as missing. This section presents ex-
emplary results for the Exponential with λ = 0.001 and Lognormal distribution
with µ0 = 5, σ2

0 = 2. The first columns in Table 2 and 3 show the cut-off
level. The thresholds were chosen at approximately 10%, 20%, 40% and 60%.
The table further demonstrate the parameter estimates for an unconditional
estimation procedure and the estimates obtained using the EM algorithm. We
introduce the following notations:

Q0: true proportion of the data below the threshold, based on the true
distribution,

QTr: estimated proportion of the data below the threshold, when uncon-
ditional density is fitted to the truncated data (Trunc.),

QEM : estimated proportion of the data below the threshold, when the
EM algorithm is performed on the truncated data.

Similarly, the superscripts (subscripts) 0, T r, EM attached to the parameters,
denote the state of the data to which assumed distribution was fitted. The
Mean Square Error (MSE) based on 100 samples is calculated as MSE(θ̂EM ) =
1

100

∑100
i=1(θ̂

EM
i − θ0)

2.
Table 3 presents the mean values for the parameters and percentages (Q)

based on 100 samples of 1000 data points in each. The numbers in the percent-
ages refer to the fraction of the estimated parameter value (or percentage below
the threshold) to the real figure. The table demonstrates that EM algorithm al-
lows to almost exactly retrieve the true parameters of the complete-data sample.
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Exponential distribution: fX(x;λ) = λe−λx, λ0 = 0.001

Truncation m θ Trunc. EM MSE QTr QEM

(Q0) (θT r/θ0) (θEM/θ0) (QT r/Q0) (QEM/Q0)

H = 110 1000 λ 0.000897 0.000995 7.45·10−10 9.39% 10.37%
(10.4%) (0.8968) (0.995) (0.902) (0.995)
H = 250 1000 λ 0.000800 0.0010 6.39·10−10 18.14% 22.13%
(22.1%) (0.8004) (1.0008) (0.820) (1.001)
H = 500 1000 λ 0.000668 0.0010 4.90·10−10 28.41% 39.46%
(39.4%) (0.6684) (1.0040) (0.722) (1.003)
H = 1000 1000 λ 0.000499 0.0010 9.91·10−10 39.30% 63.11%
(63.2%) (0.4993) (0.9978) (0.62) (0.998)

Table 2: EM-algorithm with data generated from Exponential distribution, λ0 =
0.001. Figures are based on 100 samples of 1000 points after truncation.

Lognormal distribution: fX(x;µ, σ2) = 1√
2πσ2x

exp(− (log(x)−µ)2

2σ2 ), µ0 = 5, σ2
0 = 2

Truncation m θ Trunc. EM MSE QTr QEM

(Q0) (θT r/θ0) (θEM/θ0) (QT r/Q0) (QEM/Q0)

H = 30 1000 µ 5.3272 4.9669 0.0039 4.79% 13.59%
(12.9%) (1.065) (0.993) (0.3709) (1.0527)

σ2 1.3373 2.0314 0.0209
(0.669) (1.016)

H = 50 1000 µ 5.5382 4.9889 0.0077 6.28% 22.42%
(22.1%) (1.108) (0.9978) (0.2845) (1.0150)

σ2 1.1275 2.0202 0.0218
(0.564) (1.0101)

H = 100 1000 µ 5.8819 5.0323 0.0279 8.13% 37.64%
(39%) (1.176) (1.007) (0.2084) (0.9650)

σ2 0.8369 1.9230 0.0811
(0.419) (0.962)

H = 200 1000 µ 6.3150 4.9959 0.0622 9.96% 58.01%
(58.4%) (1.263) (0.999) (0.1707) (0.9942)

σ2 0.6276 1.9681 0.0786
(0.3138) (0.9840)

Table 3: EM-algorithm with data generated from Lognormal distribution, µ0 =
5, σ2

0 = 2. Figures are based on 100 samples of 1000 points after truncation.

This is based on important assumption that the assumed distribution is the true
distribution for all data points. As expected, the Mean Square Errors increase
as the threshold level increases, which accounts for a higher degree of uncer-
tainty. The difference between the last two columns concludes what fraction of
the data below the threshold has been ignored under the truncation. It increases
proportionally with the threshold level. It is notable also, that for the lognormal
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distribution with a heavier mass in the tails (see the Appendix), these gaps are
more significant than for the lighter-tailed ones: for heavier tailed distributions
the true fraction of data below the threshold is highly under-estimated. the
effect becomes stronger the higher the threshold is chosen.
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Figure 2: Robustness check for Exponential distribution. Threshold = 30. A
sample of 100,000 points is above each cutoff level.

λ0

0.001 0.005 0.010 0.015 0.020

Q0 2.96 13.93 25.92 36.24 45.12

Table 4: Quantiles (%) for Exponential example of Figure 2.

σ2
0 \ µ0 4 5 6 7 8

1.5 47.14 18.72 4.41 0.58 0.00042

2.0 47.52 22.09 6.99 1.45 0.19

2.5 47.78 24.57 9.33 2.54 0.49

3.0 47.97 26.50 11.40 3.73 0.91

3.5 48.12 28.04 13.22 4.94 1.44

4.0 48.25 29.32 14.82 6.13 2.05

4.5 48.35 30.40 16.25 7.27 2.70

5.0 48.43 31.33 17.52 8.36 3.38

Table 5: Quantiles (%) for Lognormal example of Figure 3.
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Figure 3 further explore the robustness properties for the EM estimators.
The figures are based on the Lognormal example, but the principles hold for
other distributions. The top row of figure 3 demonstrates how the ratio of the
EM-based scale parameter σ2

EM to the true scale parameter σ2
0 , is affected by

varying the threshold level (in the absolute terms) and the initial scale param-
eter, keeping the location parameter fixed. In the ideal case, it should equal
unity. Since the cutoff level in the percentage terms is affected when parame-
ters are changed, we present the table (right) which demonstrates the effect. In
the middle row of Figure 3 a similar procedure is demonstrated for the location
parameter ratio, with fixed scale parameter. It is clear from the pictures and
corresponding tables, that for the threshold levels roughly under 50%, the EM-
based estimates of both µ and σ2 stay within 20% of the initial (true) parameter
values. Notably, even for very high thresholds (above 50%) the parameter values
obtained from the EM procedure remain still very close to the true values. The
bottom row of Figure 3 portrays the same issue from yet another angle: we fix
the absolute threshold level, and change the initial parameter values, and look
at how the EM-estimated fraction of observations under the threshold is close
to the true fraction. Again, as long as the cutoff level is roughly under 50%, the
ratio of the EM-based fraction to the true fraction is very close to unity.

In the following, empirical, section of the paper, we will use the results and
apply the procedure to the real operational risk data. The EM algorithm would
be used to reveal the true parameters of the complete-data for several business
lines in our data set.

3 Application of EM Algorithm to Operational

Loss Data

3.1 Loss Severity Distributions

In this section we apply the EM algorithm to European operational risk data.
The data set consists of the loss severity and frequency data for five types: ”Re-
lationship”, ”Human”, ”Processes”, ”Technology” and ”External”. The results
of fitting various unconditional distributions to the losses were presented in [4].
The minimum values of most of the five data sets were slightly under 10,000
USD, however only a few data points were of low magnitude for the five data
sets - since the data sets come from an external database, low magnitude losses
were in general not recorded. To ensure comparability, we truncated all data
sets strictly at 1000,000 USD, which is a standard set by the Basel Committee
for the use of external data bases.

Thus, in our analysis we assume the data to stem from an external loss
database. The parameters of various distributions are not representative of the
behavior of the losses of each financial institution. We would like to emphasize,
that this section purely demonstrates the technique. However, in practice, if the
data is truncated at a certain threshold we encourage banks to apply the same
technique to their internal databases.

10



Fitted Exponential distribution

Loss type θ Trunc. EM logLTr logLEM QT r QEM

×10−10 ×10−10

Relationship λ 98.56 99.54 -10067.44 -9967.75 0.98% 0.99%

Human λ 56.77 57.09 -11032.78 -10969.98 0.566% 0.569%

Processes λ 27.05 27.13 -4332.17 -4320.44 0.270% 0.271%

Technology λ 110.80 112.00 -1004.56 -993.37 1.10% 1.11%

External λ 93.37 94.25 -3722.45 -3687.54 0.93% 0.94%

Table 6: Distributional adjustment for operational losses with fitted Exponential
distribution, with 1,000,000 USD truncation.

Fitted Lognormal distribution

Loss type θ Trunc. EM logLTr logLEM QTr QEM

Relationship µ 16.7514 16.2544 -9698.77 -8517.55 4.57% 12.47%
σ2 3.0234 4.4825

Human µ 16.6037 14.9670 -10321.70 -6852.51 7.81% 34.58%
σ2 3.8661 8.4294

Processes µ 17.8452 17.5631 -4181.66 -3951.12 2.77% 5.60%
σ2 4.4264 5.5632

Technology µ 16.8985 15.9929 -987.91 -795.40 5.93% 20.00%
σ2 3.9031 6.6951

External µ 16.5353 15.4631 -3543.27 -2666.87 6.72% 25.44%
σ2 3.2995 6.2158

Table 7: Distributional adjustment for operational losses with fitted Lognormal
distribution, with 1,000,000 USD truncation.

We get the following results: fitting a thin-tailed distribution to the data
a much lower proportion of data is estimated to be missing. For the exponen-
tial depending on the loss type the estimated frequency varies between 0.270%
and 1.100% for the unconditional fit and between 0.271% and 1.110% for the
conditional fit using the EM algorithm. Further the differences between the
estimated parameters and thus, also the estimated fraction of missing data is
very small. We conclude that for light-tailed distributions and a comparably
high threshold is hardly makes any difference whether the naive or a conditional
estimation method is chosen.

The effect becomes much stronger if we assume a heavy-tailed distribution
for the data. For example for the lognormal distribution parameters show large
differences depending on the chosen estimation technique. We observe a de-
crease in the location parameter, and an increase in the scale parameter, as one
can expect. Further the estimated fraction of missing data compared to the ex-
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Fitted Gamma distribution

Loss type θ Trunc. CMLE logLTr logLCMLE
QT r QCMLE

Relationship α 0.3921 0.1610 -9835.76 -5832.98 12.74% 41.53%
β 2588·105 3689·105

Human α 0.2908 0.1319 -10529.5 -5911.81 17.26% 44.53%
β 6058·105 7414·105

Processes α 0.3561 0.1665 -4212.63 -2899.25 9.46% 31.85%
β 10380·105 15136·105

Technology α 0.4542 0.1843 -989.24 -624.54 10.19% 37.74%
β 1988·105 3052·105

External α 0.3450 0.1461 -3604.39 -2029.63 15.48% 44.47%
β 3105·105 4075·105

Table 8: Distributional adjustment for operational losses with fitted Gamma
distribution, with 1,000,000 USD truncation.

Fitted Weibull distribution

Loss type θ Trunc. CMLE logLTr logLCMLE
QT r QCMLE

Relationship α 0.00006 0.0032 -9762.03 -9660.40 11.50% 33.72%
β 0.5502 0.3522

Human α 0.00024 0.0221 -10412.94 -10239.29 15.31% 62.80%
β 0.4723 0.2154

Processes α 0.00008 0.0010 -4192.61 -4169.00 7.56% 17.17%
β 0.5010 0.3805

Technology α 0.00003 0.0020 -988.38 -980.37 9.11% 28.21%
β 0.5792 0.3705

External α 0.00013 0.0164 -3570.50 -3519.52 14.32% 51.03%
β 0.5102 0.2732

Table 9: Distributional adjustment for operational losses with fitted Weibull
distribution, with 1,000,000 USD truncation.

ponential distribution is much higher, depending on the loss type the estimated
frequency varies between 2.77% and 7.81% for the unconditional fit and between
5.60% and 34.58% for the conditional fit using the EM algorithm. We also ob-
serve a big difference between the estimation fraction of missing data dependent
on the chosen estimation technique. The ’information loss’ is estimated to be 2
to 5 higher if the conditional estimation method using EM is chosen, as is viewed
from the last two columns, which is a significant change. The log-Likelihood
function of complete-data set is clearly higher under the EM procedure than if
the missing data is ignored and unconditional Lognormal distribution is fitted
to observed data.

Similar effects can be observed for the fitted Weibull and Gamma distribu-
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Fitted 1-parameter Pareto distribution

Loss type θ Trunc. CMLE logLTr logLCMLE
QT r QCMLE

Relationship β 0.0597 0.3406 -10655.18 -9753.10 56.17% 99.10%

Human β 0.0602 0.3587 -11268.13 -10283.23 56.49% 99.30%

Processes β 0.0560 0.2482 -4540.94 -4229.94 53.89% 96.76%

Technology β 0.0592 0.3244 -1077.74 -989.27 55.85% 98.87%

External β 0.0605 0.3677 -3885.10 -3540.35 56.64% 99.38%

Table 10: EM-algorithm results for operational losses with fitted 1-parameter
Pareto distribution, with 1,000,000 USD truncation.

tion. For both distributions the fraction of missing data is clearly estimated
to be higher using the conditional approach that also gives higher loglikelihood
values for all loss type categories. We should assume that the unconditional
approach again clearly underestimates the true number of events.

For the fitted one-parameter Pareto distribution the results are rather ex-
treme, the distribution seems to be too heavy-tailed to make the results reliable.
While for the unconditional case a fraction of approximately 55% is estiamted
to be missing, the EM algorithm gives parameter estimates indicating a fration
of more than 95% to be missing. We consider these results as rather unrealistic
and will exclude the most heavy-tailed distribution, the one-parameter Pareto
from further analysis, since it seems not adequate for the considered data.

We conclude that for each distribution the conditional approach gave higher
values for the loglikelihood and that seems to be more appropriate to estimate
the fraction of missing data. Further we found that the difference between the
estimation techniques shows a clear tendency to become stronger, the more
heavy-tailed the distribution is.

3.2 Loss Frequency Distributions

As discussed earlier, the severity and frequency distributions of the operational
losses are inter-related. The frequency distribution needs to be adjusted accord-
ing to the ’information loss’, as discussed in the previous section. The frequency
distribution needs to be adjusted by the fraction of missing data as indicated
by the last column in tables 6 to 9. This will account for the truncated data
and the higher true frequency of the loss events.

In the following we will use the Poisson distribution to model the frequency
of different loss type categories. This is in line with the suggestions of the new
Basel capital accord. The adjustments are necessary according to the estimated
fraction of missing data and can be done according to

λ∗ =
λobs

1− P (X < H)

13



Type < 1Mio. > 1Mio. Complete Fraction < 1Mio.

Relationship 59 470 529 0.111
Human 91 503 594 0.153
Processes 5 190 185 0.026
Technology 9 51 60 0.150
External 28 184 212 0.132

Table 11: Actual Losses below and above Threshold of 1 Million USD for 1985-
2001

Based on the results of the previous section this implies that based on the
estimation method the effect of the adjustment will be greater if the conditional
estimation technique is used. Further the frequency adjustment will be depen-
dent on the chosen distribution and adjusted frequencies will be clearly higher
if a heavy-tailed distribution is assumed for the losses.

Type λ λTr λEM

Relationship 27.647 27.921 27.923
Human 29.588 29.758 29.758
Processes 11.176 11.207 11.207
Technology 3.000 3.033 3.034
External 10.823 10.925 10.926

Table 12: Parameter for estimated Exponential distribution λ, with frequency
adjustment for truncation λTr and EM truncation λEM according to Exponen-
tial distribution

Type λ λTr λEM

Relationship 27.647 28.971 31.586
Human 29.588 32.095 45.228
Processes 11.176 11.495 11.839
Technology 3.000 3.189 3.750
External 10.823 11.603 14.517

Table 13: Parameter for estimated Poisson distribution λ, with frequency ad-
justment for truncation λTr and EM truncation λEM according to Lognormal
distribution

Both effects are illustrated by tables 12 and 13. Table 12 shows frequency
adjustments for the exponential distribution where hardly any change in the
frequency parameter will happen, while for the lognormal distribution based on
the estimated fraction of missing data especially for the estimation technique us-
ing the EM algorithm substantial frequency adjustments have to be conducted,
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see table 13. As we will see in the next section this also affects the estimated
operational Value-at-Risk.

4 VaR simulation of Operational Losses

In this section we will consider the effects of the chosen estimation techniques on
operational Value-at-Risk figures for the considered data. Based on estimates
for severity and loss distributions one can generate scenarios for the losses and
estimate Value-at-Risk figures for different loss-type categories. Clearly the VaR
is dependent on the chosen loss distribution and the chosen process for modeling
the frequencies.

Type Mean V aR0.95 V aR0.99

Relationship1 0.2803 0.4123 0.4760
(0.0009) (0.0022) (0.0028)

RelationshipTr 0.2829 0.4151 0.4804
(0.0007) (0.0023) (0.0033)

RelationshipEM 0.2806 0.4116 0.4754
(0.0011) (0.0016) (0.0037)

Human1 0.5214 0.7567 0.8731
(0.0010) (0.0039) (0.0073)

HumanTr 0.5240 0.7593 0.8789
(0.0014) (0.0034) (0.0060)

HumanEM 0.5217 0.7592 0.8730
(0.0014 (0.0051) (0.0048)

Process1 0.4123 0.7241 0.8987
(0.0013) (0.0040) (0.0096)

ProcessTr 0.4145 0.7308 0.9021
(0.0014) (0.0043) (0.0125)

ProcessEM 0.4122 0.7237 0.8936
(0.0012) (0.0031) (0.0095)

Technology1 0.0270 0.0691 0.0960
(0.0002) (0.0008) (0.0013)

TechnologyTr 0.0274 0.0706 0.0975
(0.0002) (0.0010) (0.0012)

TechnologyEM 0.0271 0.0698 0.0965
(0.0002) (0.0007) (0.0011)

External1 0.1157 0.2055 0.2537
(0.0004) (0.0013) (0.0027)

ExternalTr 0.1168 0.2070 0.2550
(0.0004) (0.0019) (0.0029)

ExternalEM 0.1158 0.2052 0.2533
(0.0004) (0.0011) (0.0035)

Table 14: Simulated Losses with Exponential distribution (1010) - Threshold of
1 Million USD

15



The Basel accord suggests the use of a Compound Poisson process to aggre-
gate the operational losses. The capital charge is based on the upper quantile
of such aggregated distribution.

Let {N(t), t ≥ 0} be a homogeneous Poisson counting process and {Xj , j ≥ 0}
be a sequence of iid random variables independent of {N(t), t ≥ 0}. A com-
pound process

SN (t) =

N(t)∑

j=0

Xj , t ≥ 0 (4.1)

is called a compound Poisson process.
The cumulative distribution of the compound Poisson process SN (t) is

P (SN ≤ x) =

{ ∑∞
n=1 P (N(t) = n) Fn∗(x) x > 0

P (N(t) = 0) x = 0
(4.2)

where Fn∗ denotes the n-fold convolution with itself. In the following we will
investigate the effects of the chosen distribution for severities and the approach
for severity estimating and frequency adjustments to the loss data on operational
VaR.

We will now use the results from sections 3.1 and 3.2 to analyze the impact of
the ’information loss’ due to the missing data, on the operational Value-at-Risk,
and, hence, on the capital charge.

We consider three possible approaches a financial institution may choose th
deal with the issue:

1. (Naive approach) Use the observed frequency λ̂obs and fit the uncondi-
tional distribution to the truncated data. This oversimplified and mis-
specified approach will lead to biased estimates for the parameters of the
loss distribution what is shown in [3].

2. Fit the unconditional distribution to the truncated data. Based on the es-
timated fraction below the threshold adjust the parameter λ̂obs according
to:

λTr =
λobs

1− P (X < H)Tr

This approach somehow considers that the missing data and threshold
by adjusting the frequency, however does not account for the bias in the
unconditionally estimated loss distribution. Since the expectation of the
severity distribution will be overestimated and the frequency underesti-
mated it will be the question which effect is stronger compared to using
the estimates based on the EM algorithm.
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Type Mean V aR0.95 V aR0.99

Relationship1 0.2799 0.4620 0.5585
(0.0013) (0.0037) (0.0055)

RelationshipTr 0.3216 0.5146 0.6170
(0.0009) (0.0023) (0.0051)

RelationshipEM 0.2808 0.4804 0.5893
(0.0009) (0.0023) (0.0069)

Human1 0.5206 0.8876 1.0935
(0.0021) (0.0050) (0.0093)

HumanTr 0.6303 1.0290 1.2449
(0.0024) (0.0054) (0.0134)

HumanEM 0.5218 0.9025 1.1179
(0.0017) (0.0053) (0.0075)

Process1 0.4129 0.8670 1.1417
(0.0029) (0.0053) (0.0166)

ProcessTr 0.4561 0.9280 1.2122
(0.0031) (0.0086) (0.0207)

ProcessEM 0.4144 0.9318 1.2711
(0.0025) (0.0062) (0.0140)

Technology1 0.0270 0.0827 0.1238
(0.0003 (0.0012) (0.0020)

TechnologyTr 0.0303 0.0891 0.1303
(0.0002 (0.0008 (0.0010

TechnologyEM 0.0269 0.0895 0.1415
(0.0002) (0.0011) (0.0028)

External1 0.1156 0.2471 0.3263
(0.0006) (0.0020) (0.0043)

ExternalTr 0.1373 0.2793 0.3635
(0.0005) (0.0019) (0.0050)

ExternalEM 0.1166 0.2567 0.3477
(0.0006) (0.0030) (0.0051)

Table 15: Simulated Losses with Gamma distribution (1010)- Threshold of 1
Million USD

3. Determine the MLE-estimates for the loss distribution with the presented
EM -algorithm and determine the adjusted frequency by

λEM =
λobs

1− P (X < H)EM

For simulations, draw losses from the unconditional distribution using
the complete-data estimated parameters via the EM -algorithm, and use
the complete-data frequency parameter. [3] show that this will lead to
asymptotically correct results for the VaR.
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The simulation results for the considered distributions are displayed in tables
14 to 17.

Dependent on the chosen the severity distribution the results are unam-
biguous. The more heavy-tailed the distribution the higher is the simulated
Value-at-Risk. This can be observed for all loss type categories and is not sur-
prising since the estimated heavy-tailed distributions provide higher risk figures
in the tail.

But from the perspective of the impact of the including or ignoring the
threshold in the parameter estimation procedure we can observe the following
effect: for the light-tailed exponential distribution ignoring the threshold of 1
Million USD doesn’t have too much impact on the simulated mean and Value-
at-Risk. Using the EM algorithm for parameter estimation gives only small
changes of the parameter λ. Therefore, also the frequency adjustment is so
small that the effect on VaR figures could nearly be neglected. An interesting
result is that for the light-tailed exponential for some loss categories the VaR
is higher choosing the EM algorithm as estimation procedure while for some
loss categories we get lower Value-at-Risk figures. However, in all event-type
categories the changes in mean and VaR between the chosen methods are always
lower than 5%. However, also recall that the exponential distribution couldn’t
provide a very good fit to the data.

For the heavy-tailed distributions we get a clear difference in VaR figures
dependent on the chosen method. For most loss type categories the VaR de-
termined by the approach using EM algorithm is between two and three times
higher than for the biased method ignoring the threshold. This is especially
true for the lognormal distribution. Further, we find that especially for the
lognormal distribution the effect of frequency adjustment is strong enough to
provide the highest VaR figures for the method using EM algorithm to deter-
mine the complete severity distribution and then adjusting the frequency. Thus,
we recommend banks to include thresholds both in the severity and frequency
estimation procedure to determine realistic operational VaR. However, further
research and analytical calculations should be conducted.

5 Summary and Conclusive Remarks

This paper has demonstrated how dealing with the missing data under a pre-
specified threshold. Dealing with operational losses that are subject to reporting
thresholds the approach showed that ignoring or including the threshold into the
estimation procedure can seriously effect the estimated parameters of the loss
distribution. If a frequency adjustment is conducted there are also great devia-
tions between estimated frequencies based on the unconditional or conditional
fit of the distribution. we also showed that the estimation technique also affects
the estimated operational VaR and the operational risk capital charge. While
for thin-tailed distributions the differences are rather small for more realistic
distributions like the Lognormal or Weibull distribution ignoring the threshold
may lead to a clear underestimation of operational VaR. Moreover, the empirical
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Type Mean V aR0.95 V aR0.99

Relationship1 0.2221 0.3931 0.5002
(0.0012) (0.0020) (0.0050)

RelationshipTr 0.2507 0.4330 0.5434
(0.0008) (0.0029) (0.0026)

RelationshipEM 0.2509 0.5368 0.8019
(0.0007) (0.0027) (0.0123)

Human1 0.2802 0.5329 0.7117
(0.0011) (0.0029) (0.0108)

HumanTr 0.3299 0.6029 0.7933
(0.0012) (0.0063) (0.0143)

HumanEM 0.4210 1.1015 1.9853
(0.0037) (0.0187) (0.0693)

Technology1 0.0305 0.1028 0.1705
(0.0005) (0.0019) (0.0047)

TechnologyTr 0.0333 0.1083 0.1787
(0.0004) (0.0014) (0.0052)

TechnologyEM 0.0327 0.1288 0.2749
(0.0005) (0.0026) (0.0120)

External1 0.0860 0.2048 0.3033
(0.0006) (0.0013) (0.0052)

ExternalTr 0.1012 0.2297 0.3311
(0.0006) (0.0022) (0.0052)

ExternalEM 0.1014 0.3107 0.6023
(0.0008) (0.0078) (0.0259)

Table 16: Simulated Losses with Weibull distribution (1010)- Threshold of 1
Million USD

analysis of this paper suggests that the impact is more severe for more heavy-
tailed distributions. However, more research on this issue has to be conducted.

We summarize other important remarks:
Other adjustments to frequency and severity distributions, and their aggrega-
tion, can be considered, in addition to those presented in the empirical analysis,
other than the EM algorithm. Some banks, for example, may fit conditional
rather than unconditional distribution to the losses, given that they exceed a
given threshold. We do believe, however, that the EM algorithm provides the
closest approximation to the true parameters of the assumed distribution, given
that no information is provided on the number and magnitudes of the missing
data other than their upper and lower bounds.
The λ parameter in the frequency distribution is assumed to be constant re-
gardless of the loss magnitudes associated with it, in this paper. This can be
of course generalized and a varying frequency parameter can be considered in-
stead. One possibility would be to use the Cox processes.
This paper considered the simplest compound process for the aggregated losses,
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Type Mean V aR0.95 V aR0.99

Relationship1 0.2354 0.5289 0.9236
(0.0014) (0.0023) (0.0055)

RelationshipTr 0.2484 0.5497 0.9593
(0.0009) (0.0031) (0.0029)

RelationshipEM 0.3415 0.8892 1.9364
(0.0008) (0.0029) (0.0128)

Human1 0.3343 0.8159 1.6163
0.0066 0.0166 0.0823

HumanTr 0.3598 0.8725 1.7142
0.0055 0.0202 0.0716

HumanEM 0.9285 2.8411 9.2153
0.0436 0.1375 0.7673

Process1 0.5742 1.8005 4.5553
0.0103 0.0382 0.1584

ProcessTr 0.5891 1.8138 4.4968
0.0162 0.0554 0.2127

ProcessEM 0.7936 2.5923 7.3580
0.0267 0.0780 0.4281

Technology1 0.0466 0.1732 0.5205
0.0015 0.0041 0.0263

TechnologyTr 0.0490 0.1813 0.5220
0.0013 0.0044 0.0303

TechnologyEM 0.0949 0.3055 1.2925
0.0070 0.0124 0.0806

External1 0.0861 0.2457 0.5277
0.0010 0.0053 0.0217

ExternalTr 0.0922 0.2626 0.5685
0.0013 0.0038 0.0341

ExternalEM 0.1706 0.5451 1.6829
0.0101 0.0184 0.1316

Table 17: Simulated Losses with Lognormal distribution - Threshold of 1 Million
USD

with the Poisson frequency distribution. However, we do not rule out the pos-
sibility of using other forms of compound processes. Some evidence [4] suggests
that the inter-arrival times do not follow the Exponential distribution. These
issues are also left to future work.
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Figure 3: Robustness check for Lognormal distribution. Threshold = 50. A
sample of 100,000 points is above each cutoff level.22


